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Abstract
We address the problem of two interacting atoms of different species inside
a cavity and find the explicit solutions of the corresponding eigenvalues
and eigenfunctions using a new variant. This model encompasses various
commonly used models. By way of example we obtain closed expressions for
concurrence and purity as a function of time for the case where the cavity is
prepared in a number state. We discuss the behaviour of these quantities and
their relative behaviour in the concurrence–purity plane.

PACS numbers: 03.67.Bg, 03.65.Yz

(Some figures in this article are in colour only in the electronic version)

The system of two two-level atoms (TLA) inside a cavity has attracted considerable attention,
both because it has become experimentally feasible and because it is the paradigm to study
the evolution of entanglement under decoherence. This combination is remarkable because
entanglement is a central resource and decoherence the major impediment for quantum
information processing [1]. The relation between concurrence and purity of the central
system yields the simplest access to the problem.

Different models of two identical TLA as a central system coupled to a cavity mode in
resonance with the atomic transition as the environment have been studied [2–5]. In this
communication, we show that one can define a wider class of such systems that remains
solvable in closed form and includes the above mentioned cases. Specifically we consider
atoms with different coupling to the cavity mode, different detuning and include dipole–dipole
as well as Ising interactions between the atoms.

We show that the total number of excitations is a conserved quantity. Using the basis
in which the corresponding operator is diagonal, the Hamiltonian will be transformed to the
block diagonal form, with maximally 4 × 4 blocks. Interestingly we could use a special case
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of this solution to construct an exactly solvable relativistic model [10] with three degrees of
freedom, namely a Dirac oscillator [11] coupled to an isospin field.

Note that models with different interacting TLA and a single excitation on a continuum
of modes have been solved [6–8] using the pseudomode approach [9] which in those cases
results in a single mode with losses. While being quite similar, the loss term violates the
conservation law we use and thus these are not particular cases of our model.

In order to focus on a particular new aspect, namely the interplay of Ising and dipole–dipole
interactions, we shall choose an example where other features of our model are simplified.
Thus, we shall apply the closed solution to study the time evolution of concurrence and purity
of two interacting TLA with equal coupling and zero detuning but arbitrary dipole–dipole and
Ising interactions. The interaction-free case basically provides the borders of the evolution if
we look at the interacting problem in a concurrence–purity (CP) diagram, a third boundary
being provided by the relative strength of the two interactions.

Particular cases of the general model, for which solutions are available, should be
experimentally feasible in cavity QED [12, 13]. While dipole–dipole interactions commonly
appear in QED, an Ising interaction might be simulated as proposed in [14–16]. Whether a
particular case, such as the one we discuss, will actually be measured depends on specific
difficulties in forming the initial state, as well as the amount of interest such a case may bring.
Some such cases, including initial coherent states, will be studied in a forthcoming paper [17].

Consider the Hamiltonian for two TLA coupled to a cavity mode and set h̄ = 1; we use
the rotating wave approximation and work in the interaction picture so we end up with

H =
2∑

j=1

{
δjσ

(j)
z + gj

(
a σ

(j)
+ + a†σ

(j)
−

)}
+ 2κ

(
σ

(1)
− σ (2)

+ + σ (1)
+ σ

(2)
−

)
+ Jσ (1)

z σ (2)
z , (1)

where δj is the detuning of the corresponding atomic transition frequency from the frequency
of the cavity mode which does not appear due to our choice of the interaction picture.

gj is the coupling to the mode, and κ and J are the strengths of the dipole–dipole and
Ising interactions, respectively. We use the standard definitions of creation and annihilation
operators for the harmonic oscillator (a, a†) and for the raising and lowering operators
σ± = (σx ± iσy)/2, with the Pauli matrices (σx , σy , σz).

The operator I = a†a + 1/2
(
σ (1)

z + σ (2)
z

)
provides an additional constant of motion and

it can be interpreted as the number of excitations in the system. Clearly, [H, I ] = 0 and
in general this is the only commuting observable of this problem. Therefore, we choose the
following basis for which I is diagonal:∣∣φ(n)

1

〉 = |n + 1〉|−−〉 ∣∣φ(n)
2

〉 = |n〉|−+〉∣∣φ(n)
3

〉 = |n〉|+−〉 ∣∣φ(n)
4

〉 = |n − 1〉|++〉.
(2)

Here |n〉 describes a state of n photons in the cavity, and |−〉 and |+〉 describe the ground and
excited states of a TLA respectively. For any given n they satisfy the relation I

∣∣φ(n)
j

〉 = n
∣∣φ(n)

j

〉
.

In this basis H is a block-diagonal matrix and each block H(n) is a 4 × 4 matrix with elements〈
φ

(n)
j

∣∣H ∣∣φ(n)
k

〉 ≡ H
(n)
jk . Explicitly, one has

H(n) =

⎛
⎜⎜⎜⎝

J − δ1 − δ2 g2

√
n + 1 g1

√
n + 1 0

g2

√
n + 1 δ2 − δ1 − J 2κ g1

√
n

g1

√
n + 1 2κ δ1 − δ2 − J g2

√
n

0 g1
√

n g2
√

n J + δ1 + δ2

⎞
⎟⎟⎟⎠ . (3)

For n = 0, the basis is reduced to the three states |1〉|−−〉, |0〉|−+〉 and |0〉|+−〉. For n = −1
it is reduced to one single |0〉|−−〉. This single state is stationary and represents the situation
where both atoms are in the ground state and there are no photons in the cavity.

2



J. Phys. A: Math. Theor. 43 (2010) 192002 Fast Track Communication

Solving the resulting eigenvalue problem implies diagonalizing each block of the
Hamiltonian. In general the characteristic polynomial for the eigenvalues leads to a depressed
quartic equation with eigenvalues:

E
(n)
j =

⎧⎪⎨
⎪⎩

−
√

R+U
2 + (−1)j

2

√
2R − U + Q√

R+U
, j = 1, 2

√
R+U
2 + (−1)j

2

√
2R − U − Q√

R+U
, j = 3, 4,

(4)

where we used the following definitions:

P = (
δ2

1 − δ2
2 + (n + 1)

(
g2

1 − g2
2

)) (
δ2

1 − δ2
2 + n

(
g2

1 − g2
2

))
+ J 2

(
(2n + 1)

(
g2

1 + g2
2

) − 2
(
δ2

1 + δ2
2

)
+ J 2 − 4κ2

)
+ 2J

(
g2

1δ1 + g2
2δ2 + 2(2n + 1)κg1g2

)
+ 4κ (δ1 + δ2) (g1g2 + κ (δ1 + δ2))

Q = 4
(
g2

1δ2 + g2
2δ1 + 4J (κ2 − δ2δ1) − 2(2n + 1)κg1g2

)
R = 2/3

(
(2n + 1)

(
g2

1 + g2
2

)
+ 2

(
δ2

1 + δ2
2 + J 2

)
+ 4κ2

)

S = 2PR +
Q2 − R3

8
, T = 4P

3
+

R2

4

U = (S +
√

S2 − T 3)1/3 + (S −
√

S2 − T 3)1/3.

(5)

The eigenvectors before normalization read

v
(n)
1,j = (

E
(n)
j − δ1 − δ2 − J

)((
E

(n)
j + J

)2 − n
(
g2

1 + g2
2

) − (δ1 − δ2)
2 − 4κ2)

− 2n
(
(δ1 + J )g2

2 + (δ2 + J )g2
1 + 2κg1g2

)
v

(n)
2,j =

√
n + 1

(
2κg1

(
E

(n)
j − δ1 − δ2 − J

)
+ g2

((
E

(n)
j − δ1

)2
+ n

(
g2

1 − g2
2

) − (δ2 + J )2
))

v
(n)
3,j =

√
n + 1

(
2κg2

(
E

(n)
j − δ1 − δ2 − J

)
+ g1

((
E

(n)
j − δ2

)2
+ n

(
g2

2 − g2
1

) − (δ1 + J )2
))

v
(n)
4,j =

√
n(n + 1)

(
2g1g2

(
E

(n)
j + J

)
+ 2κ

(
g2

1 + g2
2

))
(6)

and the orthogonal transformation which diagonalizes the Hamiltonian is given by V
(n)
j,k =

v
(n)
j,k

/(∑
l v

(n) 2
l,k

)1/2
.

By way of example we now treat a special case where we calculate the entanglement and
purity of the pair of atoms considering the cavity mode as the environment. For this purpose
it is convenient to start with product states of cavity and central system functions. We restrict
ourselves to a definite value of the observable I and choose a number state for the cavity, i.e.

|�0〉 = |n〉 (cos (α)|−+〉 + sin (α)|+−〉) . (7)

In the same subspace of fixed eigenvalue of I, one could also use the state |n + 1〉|−−〉 or
|n − 1〉|++〉 as the initial product states. This type of initial state guarantees that the evolution
stays confined in a four-dimensional subspace. The time evolution of the state vector under
Hamiltonian (1) can be written as

|�(t)〉 =
4∑

l=1

B
(n)
l (t)

∣∣φ(n)
l

〉
(8)

with the following coefficients:

B
(n)
k =

4∑
k=1

V
(n)
l,j e−iE(n)

j t
(
V

(n)
2,j cos (α) + V

(n)
3,j sin (α)

)
. (9)
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For readability, we shall omit the time dependence in the coefficients, B
(n)
k = B

(n)
k (t).

Starting from the density matrix of the whole system �(t) = |�(t)〉〈�(t)|, we take a
partial trace over the cavity degree of freedom to compute the reduced density matrix of the
two TLA, given by

ρ =

⎛
⎜⎜⎜⎜⎝

∣∣B(n)
1

∣∣2
0 0 0

0
∣∣B(n)

2

∣∣2 (
B

(n)
3

)∗
B

(n)
2 0

0
(
B

(n)
2

)∗
B

(n)
3

∣∣B(n)
3

∣∣2
0

0 0 0
∣∣B(n)

4

∣∣2

⎞
⎟⎟⎟⎟⎠ . (10)

The purity P = Tr ρ2 measures the entanglement between the central system and the
environment, i.e. the decoherence of the two TLA and we find

P = ∣∣B(n)
1

∣∣4
+

∣∣B(n)
4

∣∣4
+

(
1 − ∣∣B(n)

1

∣∣2 − ∣∣B(n)
4

∣∣2)2
. (11)

The concurrence [18] is used to measure the entanglement between the atoms. It is defined as
C(ρ) = Max{0, λ1 − λ2 − λ3 − λ4}, where λj are the eigenvalues of

(
ρσ (1)

y σ (2)
y ρ∗σ (1)

y σ (2)
y

)1/2

in a non-increasing order. In our case the concurrence is given by

C(ρ) = Max
{
0, 2

∣∣B(n)
2

∣∣∣∣B(n)
3

∣∣ − 2
∣∣B(n)

1

∣∣∣∣B(n)
4

∣∣}. (12)

Some interesting features can already be inferred by inspecting (11) and (12). For n = 0
we have B

(0)
4 = 0 and the purity has a minimum value of 1/2. As for the concurrence one can

note the absence of entanglement sudden death [19, 20] in that particular case.
Now we specialize in the symmetric case with equal couplings to the cavity, zero detunings,

but allow both types of interactions between the atoms. With these restrictions we are able to
find explicit solutions in the time domain. Using the definitions

ωn =
√

4n + 2 + (κ − J )2

βn =
√

4n2 + 4n

4n2 + 4n + 1
, γn = 6n2 + 6n + 2

4n2 + 4n + 1
,

(13)

where ωn is a frequency closely related to the eigenvalues of Hamiltonian (1), and the time-
dependent functions

F(t) = 2n + 1

ω2
n

(1 + sin (2α)) sin2 (ωnt)

G(t) = (κ − J ) cos ((J + 3κ)t) sin (ωnt)

ωn

+ sin ((J + 3κ)t) cos (ωnt),

(14)

we find the following solutions for the purity and the concurrence as functions of time:

C(t) = Max
{
0,

√
(sin (2α) − F(t))2 + cos2 (2α)G2(t) − βnF (t)

}
P(t) = 1 − 2F(t) + γnF

2(t).

(15)

In figure 1 we present these solutions for the situation where there are no initial photons
in the cavity, namely n = 0. We present three cases: in red and blue for non-interacting
atoms with initial states defined by α = π/4 and α = π/20 respectively and an interacting
case with κ = 1.5, J = 0 and α = π/20 shown in black. Both quantities, concurrence and
purity, display oscillatory behaviour, with one frequency in the non-interacting case and two
frequencies in the interacting case as can be verified in equations (14) and (15). One can also
note that with interaction (black curve) the concurrence increases while the minimum value
of purity is greater in contrast to the corresponding non-interacting case (blue-dashed curve).
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Figure 1. Concurrence and purity as functions of time for n = 0 and an initially empty cavity. The
red curve corresponds two non-interacting atoms with an initial state determined by α = π/4 (see
equation (7)), i.e. a maximally entangled pure state. The blue-dashed curve shows the behaviour
for non-interacting atoms with an initial pure, but not maximally entangled state with α = π/20.
In black, the curve for two interacting atoms with the same initial state as in the blue-dashed curve
and κ = 1.5 and J = 0.

Similar behaviour in the time domain has already been studied in other references such as
[2–5].

The graphs in the time domain look pretty standard and this does not change if both
interactions are present. It is therefore convenient to visualize the joint dynamics in a
concurrence versus purity plane, the CP-plane. Figure 2(a) shows the corresponding plane
for the curves in figure 1 with the same colour code, but now the black curve is parametrized
up to t = 20. In this plane we have plotted, to guide the eye, a grey zone corresponding to the
concurrence and purity combinations that cannot be obtained in physical states and its lower
frontier corresponds to the maximally entangled mixed states (MEMS), which for a given
value of the purity maximize the concurrence [21]. The grey dashed line is defined by the
Werner states ρW = ξ I

4 + (1 − ξ)|Bell〉〈Bell|, 0 � ξ � 1 [21, 22].
One can note as well that the dynamic of the interacting (black) case is enclosed by the

non-interacting curves, the lower bound given by the blue curve with the same initial state as
the black one, while the upper bound given by an initial state given by α = π/4. Perhaps the
most important feature here, that one cannot easily visualize in the time domain, is that for an
initial bell state with α = π/4 and no interaction between the atoms, the curve (red) follows
precisely, as we shall prove below, the one that determines the mentioned MEMS. For this we
need to first obtain the analytic solutions in the CP-plane.

We take the explicit solutions in time in equations (15), with κ = J = 0, and invert them
to find an explicit relation of the concurrence in terms of the purity. In this non-interacting
case, concurrence is represented by up to two different curves in the CP-plane

C
(n)
± (P ;α) = Max

{
0,

∣∣ sin (2α) − f
(n)
± (P )

∣∣ − βn f
(n)
± (P )

}
(16)

with γn and βn as given in equation (14) and with

f
(n)
± (P ) = 1 ± √

1 + γn(P − 1)

γn

. (17)

We find two separate cases.
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Figure 2. CP-plane for n = 0 and an initially empty cavity. The red curve shows the behaviour
in the CP-plane for two non-interacting atoms with an initial state determined by α = π/4 (see
equation (7)), i.e. a maximally entangled pure state. The blue-dashed curve shows the behaviour
for non-interacting atoms with an initial pure, but not maximally entangled state (a) α = π/20 and
(b) α = π/10. In black, the curve for two interacting atoms with the same initial state as in the
blue-dashed curve and parametrized by time up to t = 20. (a) κ = 1.5 and J = 0. (b) κ = 1.5
and J = 0.87. The grey area indicates CP combinations that cannot be obtained in physical states
and its lower frontier corresponds to the maximally entangled mixed states. The grey dashed line
represents the Werner states.

(i) For 1
2 arcsin

(
n2+n

3n2+3n+1

)
< α < π/4, the concurrence in the CP-plane is determined by the

two curves:

C(n)
+ (P ;α), 1 − 1

γn

� P � γn (1 + sin (2α))2

4
− sin (2α)

C
(n)
− (P ;α), 1 − 1

γn

� P � 1.

(18)

(ii) Otherwise, the concurrence is determined only by the curve

C
(n)
− (P ;α),

γn (1 + sin (2α))2

4
− sin (2α) � P � 1. (19)

In figure 2 we show these solutions in the CP-plane for n = 0 and different values of α. The
red curve shows the case when the starting state is the symmetric Bell state, α = π/4. This
solution has the explicit form

C
(0)
± (P ;π/4) = 1

2 (1 ∓ √
2P − 1) (20)

and it can be seen that in a certain region it coincides with the curve for the MEMS. In fact
C

(0)
− (P ;π/4) coincides precisely with the curve of the MEMS for 5/9 � P � 1. The dashed

blue curve represents the situation with an initial state determined by a pure but not fully
entangled state.

The behaviour for n > 0 is qualitatively the same and when one takes as initial state the
symmetric Bell state, α = π/4, the curves converges (n → ∞) to

C
(∞)
− (P ;π/4) = Max

{
0, 1

3 (
√

24P − 8 − 1)
}
, 1

3 � P � 1

C(∞)
+ (P ;π/4) = 0, 1

3 � P � 1
2 .

(21)

In fact, in figure 3 we took n = 5 and the red curve is a very good approximation to C
(∞)
± .

We note however that in the limit n → ∞ this curve, which is actually an upper bound, lies
below the Werner curve. For finite n the curves C

(n)
− (P ;π/4) intersect the Werner curve in an

6
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Figure 3. CP-plane, same as figure 2 but for n = 5. (a) α = π/20 for the black and blue line
and κ = 5.7 and J = 0.2 for the black line. (b) α = −π/20 for the black and blue line and
κ = J = 5

√
4 × 5 + 2 for the black line.

additional point apart from C = 1. This means that there is a small region (hardly visible in
figure 3) above the Werner curve that can be reached by the dynamics. We do not write here
explicit expressions for the dashed blue curves, as they can be obtained from equations (18)
and (19).

Figures 2 and 3 show in black the curves for the interacting case for the same initial
states as the blue-dashed curves. One can note that in the CP-plane the curves now form a
Lissajous-like figure with their frontier defined by the curves C

(n)
± (P ;α) for the starting value

of α (lower frontier) and for α = π/4 (upper frontier). Note that for increasing values of the
difference of the interactions the curve in the CP-plane does not fill the entire region enclosed
by the curves C

(n)
± (P ;α). The region filled by the black curve in figure 2(b) is smaller than in

2(a), because in 2(b) we use larger value of |κ − J |. The minimum value of the purity can be
calculated as Pmin = P(t = π/2ωn); this is the lower bound for P for the black curves in the
figures 2(a) and 3(a). A separate case arises when 1

2 arcsin
(

n2+n
3n2+3n+1

)
< α < π/4 and

(κ − J )2 <
2n(n + 1)(3 sin (2α) − 1) + 2 sin (2α)

2n + 1
.

The minimum value is Pmin = 1−1/γn, figure 2(b). If both interactions have the same strength
the curve will fill again the entire area, except in the case when there are commensurable
frequencies in F and G, equation (14). That is the case of figure 3(b) where the black curve is
closed.

We have given closed solutions for the dynamics of two different TLA in a cavity
interacting by dipole–dipole and Ising interactions. Many solvable models discussed for
two TLA in a cavity belong to this wider class of exactly solvable models including a model
for a Dirac oscillator outside the realm of quantum optics [10]. The effectiveness of the general
solution presented was displayed by calculating the evolution of concurrence and purity and
fully determining the region of its evolution in a CP diagram in a particular, but interacting
case. Interesting features appear when including both types of interactions. Intuitively one
might think of less decoherence and a more robust entanglement with increasing interaction
between the atoms. This is true if we have either of the interactions, but not necessarily if one
takes interactions of similar strength.

The parameter space of the model will be further explored in a full-length paper.
Interesting situations include placing one TLA outside the cavity or at a node of the mode and
using different detuning as well as coherent or more complicated initial states.

7
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An interesting perspective would be to extend this technique to situations, where the
couplings are chosen such that—rather than four-dimensional spaces where exact solutions
are available—we would have larger but finite spaces known in molecular physics as polyades,
which are accessible to treatments with Lie algebraic [23, 24] and semi-classical [25, 26]
techniques.

Another worthwhile line of research may be to find an even more general class of solvable
models including the one presented here and the ones using a pseudomode approach [7, 8].
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